CS 267 Applications of Parallel Computers

Lecture 12:

Floating Point Arithmetic

David H. Bailey

Based on previous notes by James Demmel and Dave Culler

http://www.nersc.gov/~dhbailey/cs267

Outline

- ° A little history
- ° IEEE floating point formats
- ° Error analysis
- Exception handling
- How to get extra precision cheaply
- ° Cray arithmetic a pathological example
- ° Dangers of parallel and heterogeneous computing

Floating Point Arithmetic: A Little History

- ° 1947: Von Neumann and Goldstine:
 - "Can't expect to solve most big [n>15] linear systems without carrying many decimal digits, otherwise the computed answer would be completely inaccurate." (wrong)
- ° 1949: Turing mentions principle of backward error analysis (BEA):
 - "Carrying d digits is equivalent to changing the input data in the d-th place and then solving Ax=b. So if A is only known to d digits, the answer is as accurate as the data deserves."
- ° 1961: BEA rediscovered and publicized by Wilkinson.
- ° 1960s: Numerous papers presented with BEA results for various algorithms.
- ° 1960s-1970s: Each computer handled FP arithmetic differently:
 - Format, accuracy, rounding mode and exception handling all differed.
 - It was very difficult to write portable and reliable technical software.
- ° 1982: IEEE-754 standard defined. First implementation: Intel 8087.
- ° 1989: ACM Turing Award given to W. Kahan of UCB for design of the IEEE floating point standards.
- 2000: IEEE FP arithmetic is now almost universally implemented in general purpose computer systems.

Defining Floating Point Arithmetic

° Representable numbers:

- Scientific notation: +/- d.d...d x rexp
- sign bit +/-
- radix r (usually 2 or 10, sometimes 16)
- significand d.d...d (how many base-r digits d?)
- exponent exp (range?)
- others?

° Operations:

- arithmetic: +,-,x,/,... How is result rounded to fit in format?
- comparison (<, =, >)
- conversion between different formats short to long FP numbers, FP to integer, etc.
- exception handling what to do for 0/0, 2*largest_number, etc.
- binary/decimal conversion for I/O, when radix is not 10.
- Language/library support is required for all these operations.

IEEE Floating Point Arithmetic Standard 754 - Normalized Numbers

Normalized Nonzero Representable Numbers: +- 1.d...d x 2^{exp}

- Macheps = Machine epsilon = 2^{-#significand bits} = relative error in each operation
- OV = overflow threshold = largest number
- UN = underflow threshold = smallest number

Format	# bits	#significand bits	macheps	#exponent bits	exponent range
Single	32	23+1	2 ⁻²⁴ (~10 ⁻⁷)	8	2 ⁻¹²⁶ - 2 ¹²⁷ (~10 ⁺⁻³⁸)
Double	64	52+1	2 ⁻⁵³ (~10 ⁻¹⁶)	11	2 ⁻¹⁰²² - 2 ¹⁰²³ (~10 ⁺⁻³⁰⁸)
Double	>=80	>=64	<=2 ⁻⁶⁴ (~10 ⁻¹⁹)	>=15	2 ⁻¹⁶³⁸² - 2 ¹⁶³⁸³ (~10 ⁺⁻⁴⁹³²)
Extended (80 bits on all Intel machines)					

° +- Zero: +-, significand and exponent all zero

Why bother with -0 later

IEEE 64-bit Floating-Point Format

- ° Bit 0: sign of entire number.
- ° Bits 1-11: exponent, offset by 2^10.
- ° Bits 12-63: mantissa.
- ° +0 and -0 are represented differently.
- ° For normalized nonzero data, a "1" is assumed hidden at the start of mantissa, so there are a total of 53 mantissa bits.
- ° Approximate decimal exponent range: 10⁻³⁰⁸ to 10³⁰⁸.
- ° Approximate decimal accuracy: 16 digits.
- ° Largest whole number that can be represented exactly: $2^{53} = 9.0072 \times 10^{15}$.

IEEE Accuracy Rules

- ° Take the exact value, and round it to the nearest floating point number (correct rounding).
- Observe of the second of th
- Other rounding options also available (up, down, towards 0).
- Oon't need exact value to do this!
 - Early implementors worried it might be too expensive, but it isn't.
- ° Applies to
 - +,-,*,/, sqrt, conversion between formats.
 - rem(a,b) = remainder of a after dividing by b.
 - a = q*b + rem, q = floor(a/b)
 - cos(x) = cos(rem(x,2*pi)) for $|x| \ge 2*pi$
 - cos(x) is exactly periodic, with period rounded(2*pi)

Error Analysis

° Basic error formula

- fl(a op b) = (a op b)*(1 + d) where
 - op one of +,-,*,/
 - |d| <= macheps
 - assumes no overflow, underflow, or divide by zero.

° Example: adding 4 numbers

•
$$fl(x_1+x_2+x_3+x_4) = \{[(x_1+x_2)^*(1+d_1) + x_3]^*(1+d_2) + x_4\}^*(1+d_3)$$

 $= x_1^*(1+d_1)^*(1+d_2)^*(1+d_3) + x_2^*(1+d_1)^*(1+d_2)^*(1+d_3)$
 $+ x_3^*(1+d_2)^*(1+d_3) + x_4^*(1+d_3)$
 $= x_1^*(1+e_1) + x_2^*(1+e_2) + x_3^*(1+e_3) + x_4^*(1+e_4)$
where each $|e_i| < \infty$ 3*macheps

- Result is exact sum of slightly changed summands x_i*(1+e_i).
- Backward Error Analysis an algorithm called numerically stable if it gives the exact result for slightly changed inputs.
- Numerical stability is a fundamental algorithm design goal.

Example: Polynomial Evaluation using Horner's Rule

- ° Use Horner's rule to evaluate $p = \sum c_k * x^k$
 - Set p = c_n , then for k=n-1 downto 0, set p = $x*p + c_k$
- ° Apply to $(x-2)^9 = x^9 18*x^8 + ... 512$.
- ° Error plot:

Example: Polynomial Evaluation (continued)

$$^{\circ}$$
 (x-2)⁹ = x⁹ - 18*x⁸ + ... - 512

° We can compute error bounds using

• fl(a op b)=(a op b)*(1+d)

Exception Handling

° What happens when the "exact value" is not a real number, or too small or too large to represent accurately?

° Five exceptions:

- Overflow exact result > OV, too large to represent.
- Underflow exact result nonzero and < UN, too small to represent.
- Divide-by-zero nonzero/0.
- Invalid 0/0, sqrt(-1), ...
- Inexact you made a rounding error (very common!).

° Possible responses

- Stop with error message (unfriendly, not default).
- Keep computing (default, but how?).

IEEE FP Arithmetic Standard 754: Denorms

- Oenormalized Numbers: +-0.d...d x 2^{min_exp}
 - Sign bit, nonzero significand, minimum exponent.
 - Fills in gap between UN and 0.

Underflow Exception

- Occurs when exact nonzero result is less than underflow threshold UN.
- Ex: UN/3.
- return a denorm, or zero.

° Why bother?

Necessary so that following code never divides by zero.

if (a != b) then
$$x = a/(a-b)$$

IEEE FP Arithmetic Standard 754: +- Infinity

- ° +- Infinity: Sign bit, zero significand, maximum exponent.
- Overflow Exception
 - Occurs when exact finite result too large to represent accurately.
 - Ex: 2*OV.
 - return +- infinity.
- Divide by zero Exception
 - return +- infinity = 1/+-0.
 - sign of zero important!
- ° Also return +- infinity for
 - 3+infinity, 2*infinity, infinity*infinity.
 - Result is exact, not an exception!

IEEE FP Arithmetic Standard 754: NAN (Not A Number)

- ° NAN: Sign bit, nonzero significand, maximum exponent.
- Invalid Exception
 - Occurs when exact result not a well-defined real number.
 - 0/0.
 - sqrt(-1)
 - infinity-infinity, infinity/infinity, 0*infinity.
 - NAN + 3.
 - NAN > 3?
 - Return a NAN in all these cases.

* Two kinds of NANs

- Quiet propagates without raising an exception.
- Signaling generate an exception when touched (good for detecting uninitialized data).

Exception Handling User Interface

Each of the 5 exceptions has the following features:

- ° A sticky flag, which is set as soon as an exception occurs.
- ° The sticky flag can be reset and read by the user:
 - reset overflow_flag and invalid_flag.
 - perform a computation.
 - test overflow_flag and invalid_flag to see if any exception occurred.
- ° An exception flag, which indicate whether a trap should occur:
 - Not trapping is the default.
 - Instead, continue computing returning a NAN, infinity or denorm.
 - On a trap, there should be a user-writeable exception handler with access to the parameters of the exceptional operation.
 - Trapping or "precise interrupts" like this are rarely implemented for performance reasons.

Exploiting Exception Handling to Design Faster Algorithms

° Paradigm:

- 1) Try fast, but possibly "risky" algorithm.
- 2) Quickly test for accuracy of answer (use exception handling).
- 3) In rare case of inaccuracy, rerun using slower "low risk" algorithm.

° Quick with high probability (ie avoid branches):

- Assumes exception handling done quickly.
- ° Ex 1: Solving triangular system Tx=b.
 - Part of BLAS2 highly optimized, but risky.
 - If T "nearly singular", expect very large x, so scale inside inner loop: slow but low risk.
 - Use paradigm with sticky flags to detect nearly singular T.
 - Up to 9x faster on Dec Alpha.
- $^{\circ}$ Ex 2: Computing eigenvalues, up to 1.5x faster on CM-5.

```
For k= 1 to n d = a_k - s - b_k^2/d vs. if |d| < tol, d = -tol if d < 0, count++ For k= 1 to n d = a_k - s - b_k^2/d \dots ok to divide by 0 count += signbit(d)
```

° Demmel/Li (www.nersc.gov/~xiaoye)

Summary of Values Representable in IEEE FP

- ° +- Zero
- Normalized nonzero numbers
- ° Denormalized numbers
- ° +-Infinity
- ° NANs
 - Signaling and quiet
 - Many systems have only quiet

- + 0...0 0.....0
- +- Not 0 or anything
- + 0...0 nonzero
- + 1....1 0......0
- +- 1....1 nonzero

High Precision Arithmetic

- ° What if 64 or 80 bits is not enough?
 - Very large problems on very large machines may need more.
 - Sometimes only known way to get right answer (example: mesh generation).
 - Sometimes you can trade communication for extra precision.
- High precision can be simulated efficiently using standard FP ops.
- ° Each extended precision number s is represented by an array $(s_1,s_2,...,s_n)$ where:
 - each s_k is a FP number
 - $s = s_1 + s_2 + ... + s_n$ in exact arithmetic
 - $s_1 >> s_2 >> ... >> s_n$
- ° Ex: Computing $(s_1,s_2) = a + b$
 - if |a|<|b|, swap them
 - $s_1 = a+b$... roundoff may occur
 - $s_2 = (a s_1) + b$... no roundoff!
 - s₁ contains leading bits of a+b, s₂ contains trailing bits
- ° Current effort to define double-double BLAS this way:
 - www.netlib.org/cgi-bin/checkout/blast/blast.pl
- ° Can be extended to arbitrary precision:
 - Priest / Shewchuk (www.cs.berkeley.edu/~jrs)

Techniques for Very High Precision Arithmetic

- ° Represent data as strings of integer or FP data.
- ° First few words define length, sign and exponent; followed by mantissa words.
- ° Use standard arithmetic algorithms, but base 2^24, 2^32 or 2^53, instead of base 10. Base 100 example:
 - $(22, 33, 44) \times (55, 66, 77) = (1210, 3267, 6292, 5445, 3388)$
 - = (12, 43, 30, 46, 78, 88) after release of carries starting at end.
- ° For very high precision (> 1000dp), use FFTs for multiplication:
 - $A \times B = FFT^{-1} (FFT(A,0) \times FFT(B,0))$ (ie linear convolution)
 - where (A,0) means append n words of zeroes to the n-word mantissa.
- ° "Quadratically convergent" algorithms (each iteration approximately doubles number of accurate digits) are known for sqrt(x), pi, e^x, cos(x), and other transcendental functions.

Bailey's High Precision Software

° Double-double package:

- Double-double data is represented as pairs of 64-bit FP numbers.
- Uses IEEE arithmetic tricks mentioned on previous slide.
- Real and complex datatypes, also sqrt, cos, e^x, etc.
- Declare DD variables with a Fortran-90 type statement, and the proper routines from the library are automatically called whenever any of these variables appears in an expression.
- A C++ interface and a quad-double package are in the works.

° Multiprecision package:

- Provides an arbitrarily high precision level.
- Uses FFTs and other advanced algorithms where appropriate.
- Fortran-90 interface permits very easy conversion of Fortran.
- C/C++ version is also available.
- ° More info: www.nersc.gov/~dhbailey

Cray Arithmetic

Historically very important

- Crays among the fastest machines.
- Other fast machines emulated it (Fujitsu, Hitachi, NEC).

Sloppy rounding

- fl(a + b) not necessarily (a + b)(1+d) but instead. fl(a + b) = $a*(1+d_a) + b*(1+d_b)$ where $|d_a|, |d_b| \le macheps$
- This means that fl(a+b) could be either 0 when should be nonzero, or twice too large when a+b "cancels".
- Sloppy division too.

° Some impacts:

- arccos(x/sqrt(x² + y²)) can yield exception, because x/sqrt(x² + y²) >1
- mod (a, b) sometimes greater than b.
- Best available eigenvalue algorithm fails.
 - Need Π_k (a_k b_k) accurately.
 - Need to preprocess by setting each $a_k = 2*a_k a_k$ (kills bottom bit).
- ° Most Cray (=SGI) systems now incorporate IEEE arithmetic.

Hazards of Parallel and Heterogeneous Computing

What new bugs arise in parallel floating point programs?

- ° Hazard #1: Non-repeatability makes debugging very hard.
- ° Hazard #2: Different exception handling may cause program to hang.
- Hazard #3: Different rounding (even on IEEE FP machines) - may result in strange errors.

See www.netlib.org/lapack/lawns/lawn112.ps

Hazard #1: Nonrepeatability due to Nonassociativity

- ° Consider s= all_reduce(x,"sum") = x1 + x2 + ... + xp
- ° Answer depends on order of FP evaluation:
 - All answers differ by at most p*macheps*(|x1| + ... + |xp|)
 - Some orders may overflow/underflow, others not!
- ° How can order of evaluation change?
 - Change number of processors.
 - In reduction tree, have each node add first available child sum to its own value - order of evaluation depends on race condition, which is unpredictable!

° Options

- Live with it, since difference likely to be small.
- Build slower version of all_reduce that guarantees evaluation order independent of #processors, to use for debugging.
- Use double-double arithmetic to guarantee repeatable answer -see He/Ding paper, "Using Accurate Arithmetics to improve Numerical Reproducibility and Stability in Parallel Applications". URL: http://www.nersc.gov/research/SCG/ocean/NRS

Hazard #2: Heterogeneity: Different Exception Defaults

Not all processors implement denorms fast:

- DEC Alpha 21164 in "fast mode" flushes denorms to zero:
 - in fast mode, a denorm operand causes a trap.
 - slow mode, to get underflow right, slows down all operations significantly, so rarely used.
- SUN Ultrasparc in "fast mode" handles denorms correctly:
 - handles underflow correctly at full speed.
 - flushing denorms to zero requires trapping, slow.

° Imagine a NOW built of DEC Alphas and SUN Ultrasparcs:

- Suppose the SUN sends a message to a DEC containing a denorm: the DEC will trap.
- Avoiding trapping requires running either DEC or SUN in slow mode.
- Good news: most machines are converging to fast and correct underflow handling.

Hazard #3: Heterogeneity: Data Dependent Branches

- Mixed Cray/IEEE machines may round differently.
- Oifferent "IEEE machines" may round differently:
 - Intel uses 80 bit FP registers for intermediate computations
 - IBM RS6K has MAC = Multiply-ACcumulate instruction
 - d = a*b+c with one rounding error, i.e. a*b good to 104 bits
 - SUN has neither "extra precise" feature.
 - Different compiler optimizations may round differently (yuck).
- Impact: same expression can yield different values on different machines.

```
Compute s redundantly
or
s = reduce_all(x,min)
if (s > 0) then
compute and return a
else
communicate
compute and return b
end
```

Taking different branches can yield nonsense, or deadlock.

Further References on Floating Point Arithmetic

- ° Notes for Prof. Kahan's CS267 lecture from 1996
 - www.cs.berkeley.edu/~wkahan/ieee754status/cs267fp.ps
 - Note for Kahan 1996 cs267 Lecture
- ° Prof. Kahan's "Lecture Notes on IEEE 754"
 - www.cs.berkeley.edu/~wkahan/ieeestatus/ieee754.ps
- ° Prof. Kahan's "The Baleful Effects of Computer Benchmarks on Applied Math, Physics and Chemistry
 - www.cs.berkeley/~wkahan/ieee754status/baleful.ps
- Notes for Demmel's CS267 lecture from 1995
 - www.cs.berkeley.edu/~demmel/cs267/lecture21/lecture21.html